16=-16t^2+179t+0

Simple and best practice solution for 16=-16t^2+179t+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=-16t^2+179t+0 equation:



16=-16t^2+179t+0
We move all terms to the left:
16-(-16t^2+179t+0)=0
We get rid of parentheses
16t^2-179t-0+16=0
We add all the numbers together, and all the variables
16t^2-179t+16=0
a = 16; b = -179; c = +16;
Δ = b2-4ac
Δ = -1792-4·16·16
Δ = 31017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31017}=\sqrt{49*633}=\sqrt{49}*\sqrt{633}=7\sqrt{633}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-179)-7\sqrt{633}}{2*16}=\frac{179-7\sqrt{633}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-179)+7\sqrt{633}}{2*16}=\frac{179+7\sqrt{633}}{32} $

See similar equations:

| 6+5x3=x | | 6(x+5)=5(x-5)+x | | (7+x/2)=14 | | 13x+4(5–3x)=1 | | 25=14+b | | 3x-5=x2 | | 12.x=156 | | 8x^2+3x-2=5 | | 128/4=m | | -6t-5=t-5 | | 1224=3.z | | x/5​+2/3​=11/3 | | 306-42=p | | 4x+2+3x-7=58 | | 3(x+3)+5=3x+7 | | -4-7f=-6f-3 | | x-(0.25x)=1,000 | | 20=7y+-y | | –5(7+x)=x–39 | | -14+n=5 | | N-246=605-(4x28) | | -0.9(h-3)=-0.99 | | 4x=2x+38 | | 8n−​(6n+5​)=9 | | 2(y-3)+2=8 | | -4(2x+5)+2x+3=−-11 | | -4=u/2-7 | | 10b+18=  28 | | 3x+3-6x+3=-3x+6 | | -6y-2=-4(y+2) | | -76=-3b49 | | 4(z-6)=5 |

Equations solver categories